
Adaptive h-refinement for reduced-order models
with application to uncertainty control

Kevin Carlberg

Sandia National Laboratories

SIAM Conference on UQ
Savannah, GA

March 31, 2014

ROM h-refinement Kevin Carlberg 1 / 27



Motivation: Bayesian inference

Structural health monitoring

source:  Theoretical & Computational Biophysics Group, UIUCsource:  Holger Speckmann,  Airbus

Given sensor data, what is the updated knowledge of
material properties throughout the aircraft?

Bayesian inference problem
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Bayesian inference

inputs µ → full-order model → outputs z

Bayes’ theorem

P(µ|z̄) =
P (z̄|µ)P(µ)

P(z̄)

measured outputs z̄ = z(µ?) + ε with noise ε ∼ N (0, σ2I)
posterior P(µ|z̄) is sought
prior P (µ) is given
normalizing factor P (z̄) is handled indirectly
likelihood P (z̄|µ) ∼ N (z(µ), σ2I) sampling requires full-order
model evaluations

Objective: numerically sample the posterior distribution

+ achievable in principle, e.g., by MCMC or importance sampling.
- barrier: sampling requires full-order forward solves
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Reduced-order modeling and Bayesian inference

inputs µ → reduced-order model → outputs zred

Replace the full-order model (FOM) with reduced-order model
(ROM)

measured outputs z̄ = z(µ?) + ε ≈ zred(µ?) + ε
likelihood P (z̄|µ) ∼ N (zred(µ), σ2I) sampling requires
reduced-order model evaluations

Problem: neglects ROM errors

z̄ = z(µ?) + ε (1)

= zred(µ?) + δz(µ?) + ε (2)

“An interesting future research direction is the inclusion of
estimates of reduced model error as an additional source of
uncertainty in the Bayesian formulation.” [Galbally et al., 2009]

Our goals:
1 construct a statistical model of this error (next talk)
2 control this error (this talk)
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Reduced-order modeling: accuracy limitation

FOM: parameterized sequence of systems of equations

rk(xk ;µ) = 0, k = 1, . . . , t (3)

with state x ∈ Rn, and residual r.

ROM

1 Offline: construct low-dimensional basis V ∈ Rn×p with p � n
2 Online: approximate xk ≈ Vx̂k and solve

VT rk(Vx̂k ;µ) = 0, k = 1, . . . , t (4)

Additional approximations needed if r nonlinear or nonaffine

+ ROMs are almost always fast (p � n).

- ROMs are not guaranteed to be accurate.

ROM accuracy is limited by the information in V.
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Example: inviscid Burgers equation [Rewienski, 2003]

∂u(x , τ)

∂τ
+

1

2

∂
(
u2 (x , τ)

)
∂x

= 0.02e0.02x

u(0, τ) = 3, ∀τ > 0

u(x , 0) = 1, ∀x ∈ [0, 100] ,

Discretization: Godunov’s scheme

xi = i × (100/250), i = 0, . . . , 250. Thus, n = 250.

τ ∈ [0, 50] with time-step size ∆t = 0.05

POD–Galerkin ROM: V ∈ R250×150 from snapshots in
τtrain ∈ [0, 2.5]
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ROM accuracy limited by relevance of training data
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ROM inaccurate when outside predictive domain of V
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Existing ROM adaptation methods

A priori adaptation: unique ROM for separate regions of the

input space [Amsallem and Farhat, 2008, Amsallem et al., 2009, Eftang et al., 2010,

Eftang et al., 2011, Haasdonk et al., 2011, Drohmann et al., 2011, Peherstorfer et al., 2013]

time domain [Drohmann et al., 2011, Dihlmann et al., ]

state space [Amsallem et al., 2012, Washabaugh et al., 2012, Peherstorfer et al., 2013].
+ Reduces the dimension of the ROM
- No mechanism to improve the ROM a posteriori

A posteriori adaptation

Revert to the FOM, solve it, and add solution to the basis
[Eldred et al., 2009, Arian et al., 2000, Ryckelynck, 2005]

Use ROM as a preconditioner for the FOM iterative solver
[Carlberg and Farhat, 2009]

+ Improves the ROM a posteriori
- Incurs large-scale operations

Goal: Cheap, a posteriori improvement of the ROM
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Adaptive h-refinement

Main idea: ROM analog to mesh-adaptive h-refinement

1 Refinement: split into basis vectors with different support

finite element h-refinement ROM h-refinement
2 Error indicators: a) dual solve (coarse), b) prolongation (fine)

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement
3 Adaptive algorithm: refine basis vecs with large error indicators
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Ingredient 1: Refinement

Main idea: ROM analog to mesh-adaptive h-refinement

1 Refinement: split into basis vectors with different support

finite element h-refinement ROM h-refinement
2 Error indicators: a) dual solve (coarse), b) prolongation (fine)

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement
3 Adaptive algorithm: refine basis vecs with large error indicators
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Refinement via splitting: Tree data structure
d = 1

C (1) = {2, 3}
E (1) = {1, . . . , 6}

d = 2
C (2) = {4, 5, 6}
E (2) = {1, 3, 4}

d = 4
C (4) = ∅
E (4) = {1}

d = 5
C (5) = ∅
E (5) = {3}

d = 6
C (6) = ∅
E (6) = {4}

d = 3
C (3) = {7, 8}
E (3) = {2, 5, 6}

d = 7
C (7) = ∅
E (7) = {2}

d = 8
C (8) = {9, 10}
E (8) = {5, 6}

d = 9
C (9) = ∅
E (9) = {5}

d = 10
C (10) = ∅
E (10) = {6}Tree data structure with m nodes

child function C : N (m)→ P (N (m))
element function E : N (m)→ P (N (n))
each basis vector i characterized by a node di

Requirements

1 Root node includes all elements E (1)

2 Each element has a single leaf node
3 Disjoint support of children E (j) ∩ E (k) = ∅, ∀j 6= k ∈ C (i)

4 ∪j∈C(i) E (j) = E (i)
+ Requirements 1–2 ensure the ROM converges to the FOM
+ Requirement 4 ensures hierarchical refined subspaces
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Tree example: n = 6

d = 1
C (1) = {2, 3}

E (1) = {1, . . . , 6}

d = 2
C (2) = {4, 5, 6}
E (2) = {1, 3, 4}

d = 4
C (4) = ∅
E (4) = {1}

d = 5
C (5) = ∅
E (5) = {3}

d = 6
C (6) = ∅
E (6) = {4}

d = 3
C (3) = {7, 8}
E (3) = {2, 5, 6}

d = 7
C (7) = ∅
E (7) = {2}

d = 8
C (8) = {9, 10}
E (8) = {5, 6}

d = 9
C (9) = ∅
E (9) = {5}

d = 10
C (10) = ∅
E (10) = {6}

Initial reduced basis V(0) = v
(0)
1 of dimension 1

Basis has been split into p = 4 vectors

d1 = 2, d2 = 7, d3 = 9, and d4 = 10

Refined reduced basis with range(V(0)) ⊂ range(V) is

V =



v
(0)
11 0 0 0

0 v
(0)
21 0 0

v
(0)
31 0 0 0

v
(0)
41 0 0 0

0 0 v
(0)
51 0

0 0 0 v
(0)
61


.
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Tree construction: k-means clustering of state variables

State variables xi that tend to be strongly positively or
negatively correlated can be accurately represented by
the same generalized coordinate, and should therefore
reside in the same tree node.

Recursively apply k-means clustering to snapshots after
1 Normalizing snapshot history of each state variable
2 Flipping over the origin if the first snapshot is negative
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Figure: State-variable data projected onto the space of the first two
observations for the example in Section ??. After processing the
observations by normalization and origin flipping, correlated and
anti-correlated variables can be easily grouped via clustering.
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Refinement machinery

VH = VhIhH

coarse basis VH ∈ Rn×p (initially equal to the V(0))

fine basis Vh ∈ Rn×q with q =
∑p

i=1 card (C (di ))

prolongation operator IhH ∈ {0, 1}q×p constructed from tree

restriction operator (not unique) IHh =
(
IhH
)+

prolongated generalized coordinates x̂hH = IhH x̂
H
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Ingredient 2: Error indicators

Main idea: ROM analog to mesh-adaptive h-refinement

1 Refinement: split into basis vectors with different support

finite element h-refinement ROM h-refinement
2 Error indicators: a) dual solve (coarse), b) prolongation (fine)

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement
3 Adaptive algorithm: refine basis vecs with large error indicators

ROM h-refinement Kevin Carlberg 15 / 27



Dual-weighted residual error indicators

Goal-oriented: aims to reduce the error in output z(x) via
targeted refinement

Analogy to duality-based error-control methods for

differential equations [Estep, 1995, Pierce and Giles, 2000]

finite elements [Babuška and Miller, 1984, Becker and Rannacher, 1996, Rannacher, 1999,

Bangerth and Rannacher, 1999, Becker and Rannacher, 2001, Bangerth and Rannacher, 2003],
finite volumes [Venditti and Darmofal, 2000, Venditti and Darmofal, 2002, Park, 2004,

Nemec and Aftosmis, 2007]

discontinuous Galerkin methods [Lu, 2005, Fidkowski, 2007]
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Dual-weighted residual error indicators

Approximate the output due to the (unknown) fine solution:

z(Vhx̂h) ≈ z(VH x̂H) +
∂z

∂x
(VH x̂H)Vh(x̂h − IhH x̂

H) (5)

Approximate the fine residual:

0 = (Vh)T r(Vhx̂h) ≈ (Vh)T r(VH x̂H)+(Vh)T
∂r

∂x
(VH x̂H)Vh(x̂h−IhH x̂

H)

and solve for the error

(x̂h − IhH x̂
H) ≈ −[(Vh)T

∂r

∂x
(VH x̂H)Vh]−1(Vh)T r(VH x̂H). (6)

Substituting (6) in (5) yields

z(Vhx̂h)− z(VH x̂H) ≈ −(ŷh)T (Vh)T r(VH x̂H)

with the fine adjoint solution ŷh ∈ Rq satisfying

(Vh)T
∂rk

∂x
(VH x̂H)TVhŷh = (Vh)T

∂z

∂x
(VH x̂H)T .
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Dual-weighted residual error indicators

z(Vhx̂h)− z(VH x̂H) ≈ −(ŷh)T (Vh)T r(VH x̂H) (7)

(Vh)T
∂rk

∂x
(VH x̂H)TVhŷh = (Vh)T

∂z

∂x
(VH x̂H)T (8)

We want to avoid fine solves like (8), so approximate ŷh as

ŷhH = IhH ŷ
H ,

where ŷH is the coarse adjoint solution to

(VH)T
∂rk

∂x
(VH x̂H)TVH ŷH = (VH)T

∂z

∂x
(VH x̂H)T .

Substituting ŷhH for ŷh in (7) yields a cheaply computable

z(Vhx̂h)− z(VH x̂H) ≈ −(ŷhH)T (Vh)T r(VH x̂H).

The RHS can be bounded by cheaply computable fine error
indicators

|(ŷhH)T (Vh)T r(VH x̂H)| ≤
q∑

i=1

δhi , δhi = |
[
ŷh
H

]
i

(
vhi
)T

r
(
VH x̂H

)
|.
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Ingredient 3: Adaptive algorithm

Main idea: ROM analog to mesh-adaptive h-refinement

1 Refinement: split into basis vectors with different support

finite element h-refinement ROM h-refinement
2 Error indicators: a) dual solve (coarse), b) prolongation (fine)

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement
3 Adaptive algorithm: refine basis vecs with large error indicators
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Adaptive algorithm

Algorithm 1 Outer loop

Input: timestep k, basis V
Output: updated basis V, generalized state x̂k

1: Compute ROM solution x̂k satisfying VT rk(Vx̂k ;µ) = 0.
2: if Output error estimate δz ‘too large’ then

3: Refine basis via Algorithm 2: V← Refine
(
V, x̂k

)
.

4: Return to Step 1.
5: end if
6: if mod (k , nreset) = 0 then

7: Reset basis V← V(0).
8: end if
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Adaptive algorithm

Algorithm 2 Refine

Input: initial basis V, reduced solution x̂
Output: refined basis V
1: Compute prolongation operator IhH and fine reduced basis Vh

2: Compute coarse adjoint solution ŷH and prolongation ŷhH
3: Compute fine error indicators δhi , i = 1, . . . , q
4: Identify basis vectors to refine I : those whose children contribute have

above-average contributions to the total estimated error
5: for i ∈ I do
6: Split vi into card (C (di )) vectors
7: end for
8: Compute QR factorization with column pivoting V = QR, RΠ̄ = Q̄R̄.

9: Ensure full-rank matrix V← V [π̄1 · · · π̄r ], with r the rank of R.
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Previous example
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Generated by POD–Galerkin with V ∈ R250×150 from
snapshots in τtrain ∈ [0, 2.5]
Now, try POD–Galerkin with V(0) ∈ R250×10 from snapshots
in τtrain ∈ [0, 2.5] , but with proposed h-adaptivity.
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Previous example with h-adaptivity
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dimV(0) = 10

mean(dimV) = 44.3

h-adaptation allows the ROM to capture phenomena not
present in the training data!
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Inviscid Burgers equation: results

typical ROM h-adaptive ROM

dimV(0) 10 45 150 5 10 20 10 10
basis-reset

50 50 50 100 25
frequency

mean(dimV) 10 45 150 41.4 44.3 58 73 37
Avg splits 0.20 0.19 0.14 0.13 0.28
error (%) 45.8 43.9 8.5 0.3 0.5 0.2 0.2 0.3

online time (s) 1.4 2.14 5.77 5.53 4.63 7.27 6.90 7.46

+ Low errors achievable only with h-adaptivity

Smaller initial basis: smaller basis dimension, but more splits

More frequent basis resetting: smaller basis dimension, but
more splits
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Conclusions

Adaptive h-refinement via splitting

Incrementally improves ROM without requiring large-scale
operations or solves
Enables uncertainty control
Extends utility of ROMs to highly nonlinear problems

Future work

Nonlinear model reduction: incorporating complexity reduction
(e.g., empirical interpolation, gappy POD) into refinement
Adaptive coarsening instead of (simple) basis resetting
Adaptive p-refinement: add other basis vectors (e.g., truncated
POD vectors, discrete wavelets) from a library
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Questions?

K. Carlberg, “Adaptive h-refinement for reduced-order models,” on
arXiv later this week.
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